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Abstract: Selecting a well-suited method for isolating/characterizing circulating tumor cells (CTCs)
is challenging. Evaluating sensitive and specific markers for prostate cancer (PCa)-specific CTC
identification and analysis is crucial. We used the CellCollector EpCAM-functionalized system (CC-
EpCAM) and evaluated and developed a PCa-functionalized version (CC-PCa); we then compared
CTC isolation techniques that exploit the physical and biological properties of CTCs. We established
two cohorts of metastatic PCa patients (mPCa; 15 in cohort 1 and 10 in cohort 2). CTC cultivation
experiments were conducted with two capturing methods (Ficoll and ScreenCell). The most sensitive
detection rates and highest CTC counts were reached with the CC-PCa and ScreenCell system.
Patients with ≥5 CTCs isolated with CC-EpCAM had an overall survival (OS) of 0.93 years, and
patients with ≥5 CTCs isolated with CC-PCa had an OS of 1.5 years in cohort 1. Nevertheless,
we observed the highest sensitivity and specificity for 24-month survival by the Ficoll with CD45
depletion and ScreenCell system with May-Grunwald Giemsa (MGG) staining. The EpCAM molecule
is an essential factor related to OS for CTC isolation based on biological properties in mPCa patients.
The best-suited CTC capture system is not limited to one characteristic of cells but adapted to
downstream analysis.

Keywords: circulating tumor cells; prostate cancer; isolation platforms

1. Introduction

Circulating tumor cells (CTCs) have been one of the most discussed biomarkers
for monitoring cancer progression in the last decade. They are individual tumor cells
or cohorts of cells from primary tumors or metastases that may invade the vasculature
in adjacent tissue [1,2]. In the blood of cancer patients, CTCs might reflect important
information on current tumor progression and cancer treatment. Furthermore, CTCs
represent a heterogeneous population, and only a very small percentage (<<0.01%) of
the millions of cells that enter the blood system daily have the ability to form metastases.
During dissemination, multiple steps and mechanisms are involved in phenotypic changes
in CTCs.

Epithelial–mesenchymal transition (EMT) is a significant mechanism by which CTCs
invade the surrounding stroma and blood circulation [3]. In this process, CTCs lose
epithelial markers, such as epithelial cell adhesion molecules (EpCAM) and E-cadherin,
and show a mesenchymal phenotype. This morphological change is generally reversible
via epithelial–mesenchymal transition (MET), which includes the activation of mixed
epithelial/mesenchymal CTC hybrid phenotypes [1,4]. These CTC phenotypes are also
present in the blood of patients with prostate cancer (PCa) [5].

PCa is the second most diagnosed cancer, with an estimated 1.4 million new cases
worldwide in 2020, and it was the fifth leading cause of death in that same year [6]. In
the clinic, PCa can be present in a localized indolent or metastatic lethal stage. Individual
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patients demonstrate phenotypic and genomic intratumoral heterogeneity, which is chal-
lenging for diagnosis and treatment [7,8]. A single tissue biopsy sample may not reflect the
current stage of the cancer. Therefore, liquid biopsy as a method that captures heteroge-
neous tumor material is needed. The isolation and characterization of CTCs provide such
opportunity [9,10]. CTC enrichment can be achieved based on physical (size, deformability,
density or electrical charge) or biological (cell-surface protein) properties [11]. Unfortu-
nately, the gold standard CellSearch system (Silicon Biosystem, Menarini, Florence, Italy)
isolates CTCs with EpCAM-coated ferrofluid beads and identifies an overexpression pat-
tern of cytokeratin (CK) 8, 18 and 19 and the absence of CD45 expression [12,13]. This
is the only Food and Drug Administration (FDA)-approved CTC isolation platform for
monitoring patients with metastatic prostate (mPCa), breast and colorectal cancers [13–15].
However, EpCAM-based enrichment of CTCs alone does not always correspond to hetero-
geneity in the CTC phenotype. Furthermore, for PCa, it is crucial to evaluate sensitive and
specific markers for cancer-specific CTC identification and analysis.

Prostate-specific membrane antigen (PSMA), a type II transmembrane glycoprotein,
has become a clinically validated therapeutic target [16]. PSMA expression in PCa tissue
is 100 to 1000 times higher than that in benign tissue [17]. Interestingly, antiandrogen
treatment upregulates PSMA expression in patients with castration-resistant prostate cancer
(CRPC) [18]. Low levels of PSMA can be expressed in lung cancer, colorectal carcinoma
and glioblastoma [19].

Another possible marker for CTC isolation/characterization is prostate stem cell
antigen (PSCA), a glycosylphosphatidylinositol (GPI)-linked cell-surface protein that is
expressed in >80% of PCa patients [20]. This cell-surface protein shares 30% homology
with stem cell antigen type 2 (SCA-2), a surface marker of immature lymphocytes [21].
Furthermore, PSCA expression increases with a higher Gleason grade and progression to
androgen independence [22]. PSCA can also be detected in the kidney, urothelium and
lung, which has been reviewed by van der Toom et al. [23] 2019.

The most commonly used marker in PCa screening, monitoring and disease progres-
sion is prostate-specific antigen (PSA, also known as kallikrein-related peptidase 3). The
expression of PSA is specific for PCa, but it also tends to decrease with cancer progression
and phenotypic change [7,24]. Moreover, PSA is an androgen-regulated protease, and
PCa cell proliferation is highly dependent upon androgen receptor (AR) signaling [25,26].
Androgen deprivation therapy (ADT) results in a decrease in PSA secretion under the
detection limit in serum. A rising PSA level is associated with the development of CRPC
and the risk of metastasis [27].

Nevertheless, PSMA, PSCA and PSA are potential markers for specific enrichment
of CTCs in the blood of patients with metastasized PCa. The aim of our preliminary
investigation was to evaluate and develop a PCa-specific CTC isolation method. For this
purpose, we used the CellCollector (CC-EpCAM), a medical wire that enables in vivo CTC
isolation with a monoclonal antibody directed to the cell-surface-expressed EpCAM of
CTCs in the peripheral blood [28–31]. In our trial, we functionalized the new form of the
CellCollector with EpCAM antibody or with previously mentioned PCa markers (CC-PCa).
In a proof of concept, we analyzed the different CellCollector system ex vivo.

We compared isolation techniques that use the physical (size and the density of
cells) and biological (expression of EpCAM, PSMA, PSCA and PSA) properties of CTCs.
Additionally, we aimed to determine a suitable CTC isolation method for possible CTC
cultivation in advanced PCa patients.

2. Materials and Methods
2.1. Study Collective

This prospective study was planned for the University Clinic and Outpatient Clinic
for Urology, Medical Faculty of Martin Luther University Halle-Wittenberg. All patients
provided written informed consent before blood collection. The protocol was approved
by the medical faculty ethics committee of Martin Luther University Halle-Wittenberg
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(2012-65). Men were enrolled with histologically confirmed and metastatic prostate ade-
nocarcinoma. We evaluated differential CTC capture methods in mPCa patients. For
this purpose, two cohorts of PCa patients under treatment were prospectively analyzed.
Blood samples from cohort 1 (n = 15) were analyzed with two different functionalized and
spiralized CellCollector systems (GILUPI GmbH, Potsdam, Germany). In cohort 2 (n = 10),
the ScreenCell (SC) kit (ScreenCell SA, Sarcelles, France) for cytological analysis and the SC
kit for cell culture and buffy coat analysis accompanied by CD45 depletion were evaluated.
The viability of CTCs was checked in cell culture approaches only in cohort 2 (Figure 1).
All blood samples (EDTA tubes) were processed within 3 h.
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Ficoll *: Ficoll + CD45 depletion.

2.2. Antibody Validation for the PCa-Specific Functionalization of the CellCollector System

The PCa cell line LNCaP was purchased from ATCC (www.atcc.org, accessed on
1 April 2018) and routinely maintained in RPMI 1640. The media were supplemented with
10% fetal bovine serum. The cell line was grown on sterile glass slides until it reached a conflu-
ence of 70%. The cells were fixed with ROTI-Histofix 4% (Carl Roth, Karlsruhe, Germany) for
15 min, washed with phosphate-buffered saline (PBS) (Sigma/Merck, Darmstadt, Germany),
and blocked with 5% milk (Th. Geyer, Berlin, Germany) in PBS. Incubation with anti-PSMA
(Cell Signaling Technology, Frankfurt, Germany), anti-PSCA (Abcam, Cambridge, UK)
or anti-PSA (Cell Signaling) was performed overnight at 4 ◦C. The secondary antimouse
antibody (DIANOVA GmbH, Hamburg, Germany) was applied the next day for 1 h at
RT. Cell nuclei were visualized using Hoechst 33258 (Merck, Darmstadt, Germany). Im-
ages (60×) were taken using an inverted fluorescence microscope (Carl Zeiss Microscopy,
Jena, Germany).

2.3. CTC Isolation Approaches Based on Biological Properties

CellCollector (CC) system was used to enrich CTC based on expression of the FDA-
approved surface marker EpCAM (CC-EpCAM) [13]. Furthermore, we developed a PCa-
specific functionalization of the CellCollector system (CC-PCa). This was performed with
a combination of 4 different antibodies against PSMA, PSA, PSCA and EpCAM. The
concentration of the antibodies was 7.5 µg/mL; in summary, 20 µg antibodies were coupled
on the spiral tip.

The single steps of the procedure were performed as described in Theil et al. [32].
We used 16 cm-long spiraled medical stainless steel wires. The 4 cm spiraled tips of the
wire were previously covered with a thick (0.2 µm) layer of gold and a polycarboxylate
layer (1–5 µm). We incubated them for 15 min in sterile distilled water to rehydrate the
hydrogel and then activated them in 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide
hydrochlo-ride/N-hydroxysulfosuccinimide (EDC/NHS) solution (Sigma) for 20 min at
22 ◦C. Next, a 100 mM solution of NHS in 50 mM 2-(N-morpholino)ethane-sulfonic acid
(MES) buffer (Sigma), 0.5% EDC (Sigma) was added. Finally, the wire was rinsed using
5 mM acetic acid (Roth) and incubated with EpCAM or PSCA, PSMA, PSA and EpCAM
antibodies for 1 h at 22 ◦C to achieve covalent bonding between the hydrogel and the

www.atcc.org
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antibody. To block the free carboxyl groups, the hydrogel-covered wire was incubated with
1 M ethanolamine hydrochloride (Sigma) at pH 8.5. After washing with distilled water, the
wires were stored at 4 ◦C until use.

In the following step, the performance of CC-EpCAM and CC-PCa was demonstrated
in spiking experiments. Single LNCaP cells were spiked into healthy donor blood, and
CellCollector wires were placed into the blood in a 7.5 mL EDTA tube, positioned on
a rotating platform at room temperature and incubated for 60 min. At the end of the
incubation, the wires were immediately placed in PBS and rinsed three times in a tube
with new PBS solution. The cells were fixed on the wire with a 10 min acetone treatment
and blocked with 3% bovine serum albumin/PBS for 30 min. Patient blood samples were
subjected to the same conditions. By in vivo application, the wire would be inserted into
the cubital vein through a 20G cannula and remain in place for 30 min. The CC-PCa was
not approved for in vivo; for this reason, we compared the different wires ex vivo.

2.4. CTC Isolation Approaches Based on Physical Properties

The ScreenCell Cyto kit (ScreenCell SA, Sarcelles, France) isolates CTCs based on their
size (<8 µm) with a filter system. All cells smaller than 8 µm are run through the filter. We
performed the analysis using 3 mL of blood according to the manufacturer’s instructions
(ScreenCell, Sarcelles, France) for cytomorphology characterization of the remaining cells.

Three milliliters of EDTA blood was diluted in 4 mL filtration buffer and incubated
for 8 min at room temperature. After incubation, 7 mL of diluted blood was filtered, and
the filter device was washed with PBS. The filter was released onto absorbing paper and
dried at room temperature for 15 min. After drying, cytomorphology characterization
was performed.

The second CTC isolation method was based on the density of the cells and the CD45
depletion step using preconjugated, anti-CD45 magnetic beads (Dynabeads CD45, Life
Technologies, Carlsbad, CA, USA). CTC enrichment was succeeded by density gradient
separation with Histopaque-1077 (Sigma-Aldrich, Steinheim, Germany). Three milliliters
of Histopaque-1077 was transferred to a sterile 15 mL tube and carefully overlayered with
3 mL of blood. This sample was centrifuged for 30 min at 500 g without braking to separate
mononuclear cells (including CTCs) located at the interface between the plasma (upper
layer) and the Ficoll-Histopaque (bottom). The interface was gently removed to avoid
disturbing the layering, transferred to a new sterile tube and washed 3 times with sterile
PBS. Recovered cells were resuspended in 500 µL PBS and prepared for microscopical
examination (cytospins) by a cytocentrifuge (Epredia Cytospin 4 Zytozentrifuge, Ther-
moScientific, Waltham MA, United States) at 1000 rpm for 4 min at room temperature.
The cytospins (ten slides) dried at room temperature (RT) for a minimum of 30 min and
identified by cytomorphological or fluorescent immunohistochemistry characterization.

2.5. Ex Vivo Culture of CTCs

For cultivation with the ScreenCell Kit (ScreenCell Cell Culture Kit, ScreenCell SA,
Sarcelles, France), we used 7 mL of diluted blood (6 mL of blood to 1 mL of ScreenCell
LC dilution buffer). After incubation for 2 min, 1.6 mL of culture medium was added and
homogenized once by inverting the tube, and filtration was started. Subsequently, the filter
was released into a tissue culture plate filled with 600 µL culture medium.

CTCs from 3 mL of blood with a Ficoll * gradient were prepared for cultivation, as
mentioned above, by adding 500 µL of cultivation medium.

The medium consisted of RPMI Medium 1640 (Life Technologies, Carlsbad, CA, USA),
recombinant human epidermal growth factor 20 ng/mL (Life Technologies), recombi-
nant human basic fibroblast growth factor 50 ng/mL (Life Technologies), 1% penicillin–
streptomycin mix (Life Technologies) and 1 mL/50 mL B27 supplements, minus vitamin A
(Life Technologies). No androgens and glucocorticoids were additionally included.

After gentle mixing, 30 µL of the cell suspension was transferred into wells of a 12-well
cultivation plate. Furthermore, 20 µL of cell suspension was added to a well of a 10-well
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CELLview slide (Greiner Bio-One, Frickenhausen, Germany). CTCs were cultivated under
standard culture conditions (37 ◦C and 5% atmospheric CO2) and observed by inverted
microscopy. We changed a third of the medium after the 10th, 13th and 22nd days of
cultivation and determined the PSA level in the samples.

2.6. Staining an Enumeration of Collected Cells

The cells isolated by the SC filter and Ficoll * were stained with May-Grunwald Giemsa
staining. Staining was performed according to the manufacturer’s instructions. The filter
was incubated for 2 min in May-Grunwald solution and for the next 10 min in Giemsa
solution. After that, the filters and slides were washed with distilled water and dried for
15 min at room temperature.

The captured cells were fixed and blocked on the wire surface or on the Ficoll ** slides.
The cells were identified as CTCs by immunofluorescence staining using pan-CK- and
Hoechst-33258-positive and CD45-negative criteria. The CTCs met the following cytology-
based FDA definition: (i) size ≥4 µm, (ii) visible cytoplasm, (iii) high nuclear/cytoplasm
ratio, (iv) positive fluorescence staining of CK 8, 18 and 19 with negative staining of CD45
and (v) 50% of the nucleus contained within the CK border enumeration [33].

2.7. PSA Measurement

The PSA secretion of the cultivated CTCs in the supernatant was determined with
an IMMULITE 1000 Immunoassay System (SIEMENS Healthineers, Erlangen, Germany).
We used the third-generation PSA assay, which provides a very low PSA detection limit
of 0.005 ng/mL.

2.8. Statistical Analysis

Since the sample size was rather small, we did not perform an extensive statistical anal-
ysis. We applied the Mann–Whitney test to compare continuous clinical and demographic
parameters in our cohorts. Additionally, several other nonparametric tests were performed
as specified in the Results section. Finally, for identification of possible correlations between
the different methods, Spearman’s rank correlation coefficient (rs) was determined. The
reported p values were two-sided, and ≤0.05 was considered significant. The accuracy
of the CTC isolation methods was evaluated by receiver operating characteristic (ROC)
analysis. Kaplan–Meier analysis was used to analyze overall survival (OS) depending
on CTC count [34,35]. All statistical analyses were performed using GraphPad Prism
software version 9.

3. Results
3.1. Patient Characteristics and Treatments

All the patients in our two independent cohorts had histologically and radiologically
confirmed mPCa. Patients with a second cancer diagnosis were not included in this analysis.
We enrolled the patients randomly in a timeline of 6 months for every cohort. Genetic
characterization of primary tumor or metastasis were not performed. The clinical and
pathological parameters of the patients are summarized in Table 1. A statistically significant
difference was observed for only one of the surgical procedures (transurethral resection of
the prostate) in the cohorts. The median age of cohort 1 was 74 years and that of cohort
2 was 63.5 years (p = 0.03). Twelve patients (80%) in cohort 1 and nine patients (90%) in
cohort 2 had a Gleason score of more than 7 at the time of diagnosis. At the time of CTC
sample collection, all patients received ADT and/or chemotherapy. The median PSA level
was 13 ng/mL (0.02–353 ng/mL) in cohort 1 and 71.9 (1.7–184 ng/mL) in cohort 2 (p = 0.8).
More than 86% of patients in cohort 1 and 100% in cohort 2 had bone metastasis. Lymph
node metastasis was present in 41.7% of cohort 1 and in 50% of the patients in cohort 2.
One patient in cohort 2 was only under ADT and presented multiple bone and lymph
node metastases.
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Table 1. Clinical characteristics of the metastatic prostate cancer patients in cohorts 1 and 2.

Cohort 1 Cohort 2 p Value

Patients, n (%) 15 (100) 10 (100)
Median age (range), years 74 (60–84) 63.5 (49–86) 0.03

Ethnicity Caucasian Caucasian
Gleason score at diagnosis, n (%) 0.09

≤7 3 (20) 1 (10)
>7 12 (80) 9 (90)

PSA at study visit,
median ng/mL (range) 13 (0.02–353) 71.9 (1.7–184) 0.8

Primary therapy, n (%)
Surgery 6 (40) 3 (30) 0.69

Radiation 9 (60) 5 (50) 0.69
Current therapy, n (%)
Androgen deprivation 15 (100) 10 (100) 1

TURP 15 (100) 2 (20) <0.001
Chemotherapy 10 (83.3) 8 (80) 0.66

Site of metastatic disease, n (%)
Bone 12 (86.7) 10 (100) 0.14

Lymph 5 (41.7) 5 (50) 0.68
Brain 1 (8.3)
Liver 1 (8.3)

Abbreviations: PSA = prostate-specific antigen, TURP = transurethral resection of the prostate, CTC = circulating
tumor cells.

3.2. Identification of Suitable Antibodies for PCa-Specific Functionalization of the CellCollector System

First, to implement CC-PCa for CTC capture, we checked and identified suitable
antibodies compatible with the functionalization procedure and effective CTC capture.
Immunofluorescence analysis revealed precise patterns of the antibodies used in LNCaP
cells. The PSMA (12702S) antibody was used to detect the extracellular domain of the
type II transmembrane protein. We confirmed this signal by immunostaining LNCaP cells
(Figure 2b). The PSA signal of the antibody (5877S) displayed a strong cytoplasmic portion
in the LNCaP cells (Figure 2e). The recombinant amino acid fragment corresponding
to amino acid 1 to the C-terminus of human PSCA was used to generate the polyclonal
PSCA antibody (ab 220101). We observed predominantly cytoplasmic and marginal cell
membrane signals of the PSCA antibody (Figure 2h).

To check the functionality of the prepared CellCollector wires, we spiked LNCaP cells
(200 cells) into healthy donor blood and evaluated the detection rate of the CC-PCa and
CC-EpCAM systems. These samples (n = 3) were analyzed on one batch. Recovery rates
from 48% for CC-PCa (PSMA, PSCA, PSA and EpCAM) and from 30% for CC-EpCAM
were observed.

3.3. Comparison of CTC Detection Methods

Different CTC isolation methods were analyzed in the two independent cohorts of mPCa
patients (Figure 3). Positive CTC patients in our cohorts were defined as having ≥1 CTC
in the blood sample. In cohort 1, we compared the different functionalized CellCollector
systems with spiralizer tips (Figure 3a). With CC-PCa, we detected ≥1 CTC in 12 out of
15 (86.7%) patients (Figure 4e–h); with CC-EpCAM, we detected ≥1 CTC in 11 out of 15
(73.3%) patients. The median CTC count detected with CC-PCa was nine (range 0–122) and
that with CC-EpCAM was three (range 0–22). Additionally, the Wilcoxon matched-pair
analysis demonstrated a median of four CTC differences when comparing CC-PCa to
CC-EpCAM (p = 0.002). Interestingly, only a weak correlation was observed between the
different functionalized wires (Spearman rank correlation coefficient rs = 0.37, p = 0.17).
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Figure 3. Direct comparison of CTC detection: (a) with the CC-EpCAM and CC-PCa systems, and
the Wilcoxon matched-pairs signed-rank test was used, p ** 0.002. (b) CC-EpCAM, ScreenCell Cyto
device (SC) and Ficoll gradient with CD45 depletion Ficoll *-May-Grunwald Giemsa (Ficoll *-MGG)
and Ficoll **-immunofluorescence staining (Ficoll **-IF) systems and Dunn’s multiple comparison
test were used. Ficoll **-IF vs. SC-MGG, p = ** 0.002 and Ficoll *-MGG vs. SC, p = ** 0.002.
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Figure 4. Representative CTC images (a,e) and negative leukocyte staining (c,g) from selected patients
of our cohorts collected by Ficoll ** (a–d) and CC-PCa (e–h). CTCs were defined as cells with positive
staining for CK (a,e) but negative staining for CD45 (c,g). Hoechst staining showed the presence
of cell nucleoli (b,f). The scale bars indicate 20 µm, and cells were scanned at a magnification of
63.3× (a–d). The scale bars indicate 50 µm, and the cells were scanned at a magnification of 20× (e–h).
Merge images are presented in (d,h).

In cohort 2, three different CTC isolation techniques based on the physical and biologi-
cal CTC characteristics were compared, and two different staining methods for identifica-
tion were used. The CTC detection rates based on the density (Ficoll *) and CD45 depletion
were 2 out of 10 (20%) with immunofluorescence staining (Ficoll **) (Figure 4a–d) and 4 out
of 10 (40%) with MGG staining (Ficoll *). The SC filter with MGG staining based on the size
of the cells was used to detect CTCs in 8 out of 10 (80%) patient samples (Figure 5). Two of
the ten SC probes could not be evaluated because of blood clots on the filters.
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Figure 5. CTCs stained with MGG present in blood samples of PCa patients: (a,b) Patient #7 current
treatment enzalutamide after docetaxel chemotherapy with a PSA level of 105 ng/mL. (c) Patient #5
current treatment docetaxel chemotherapy with a PSA level of 5.2 ng/mL. Scale bares indicate 20 µm.
Arrows indicate CTCs.

CC-EpCAM detected CTCs per 7 mL in 8 out of 10 (80%) cohort 2 patients (Figure 3b).
To better compare all the CTC detection rates (≥1 CTC), we calculated the blood volume
needed for CC-PCa to be 3 mL and detected CTCs in 5 out of 10 (50%) blood samples. The
median CTC count was 0.65 CTC (range 0–6 CTCs) per 3 mL of blood for CC-EpCAM and
0 CTCs for Ficoll * (range 0–2) and Ficoll ** (range 0–36 CTCs). The SC filter captured a
median of 14 CTCs per 3 mL of blood (range 1–79 CTCs) (Figure 3b). The CTC count of
the Ficoll * filter correlated moderately with the SC filter, rs of 0.54, but was not significant
(p = 0.18). In addition, the CTC count for CC-EpCAM with Ficoll * correlated with a
moderate rs of 0.47 (p = 0.16). Significant differences in CTC count were demonstrated
between CS-MGG vs. Ficoll * (p = 0.002) and CS-MGG vs. Ficoll ** (p = 0.002). For the
analysis, Dunn’s multiple comparison test was used (Figure 3b).
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The PSA level demonstrated no significant correlation with the CTC isolation method
in either cohort.

To evaluate the sensitivity and specificity of the different isolation methods for pre-
dicting survival, we determined the receiver operating characteristic (ROC) and area under
the curve (AUC) of the survival models. The CTC cutoff was ≥1 CTC. The results demon-
strated that for a survival time of 24 months, the AUC values of the CTC isolation methods
ranged from 0.53 to 0.79 (Table 2). Interestingly, the efficacy of CTC isolation with Ficoll *
(AUC = 0.79) was higher than that of CC-EpCAM and CC-PCa in cohort 1 and that of
CC-EpCAM, SC and Ficoll ** in cohort 2 (AUC = 0.53, 0.67, 0.55, 0.73 and 0.67, respectively,
Table 2). Furthermore, the AUCs (0.73 and 0.79) of the CTC isolation methods, which used
MGG staining, were the highest (SC and Ficoll *).

Table 2. Receiver operating characteristic curves for the CTC isolation methods.

CTC Isolation Method AUC 95% CI p Value

Cohort 1: CC-EpCAM 0.53 0.22–0.84 0.86

Cohort 1: CC-PCa 0.67 0.38–0.95 0.29

Cohort 2: CC-EpCAM 0.55 0.14–0.96 0.82

Cohort 2: SC-MMG 0.73 0.36–1.00 0.30

Cohort 2: Ficoll * 0.79 0.50–1.00 0.17

Cohort 2: Ficoll ** 0.67 0.30–1.00 0.44
Abbreviations: CC-EpCAM = CellCollector EpCAM functionalized, CC-PCa = CellCollector PCa functionalized,
SC-MMG = SC filter with MGG staining. * MGG staining, ** immunofluorescence staining.

Additionally, the isolation methods used required equivalent professional laboratory
skills of the staff. The working time per method ranged from >2 h for the SC system to >3 h
for the other three systems (Table 3). The SC filter device provided rapid CTC isolation with a
single wash step. The CellCollector and the Ficoll gradient systems required more than three
wash steps. We observed a higher number (≥500) of contaminating leukocytes when we used
the size-based and density-based CTC isolation methods. Lower leukocyte contamination
by the Ficoll system was reached by the addition of a CD45 depletion step. However, the
CellCollector system had the lowest leukocyte contamination. Of the four isolation methods,
only the Ficoll * method was able to isolate CTCs that could be cultivated. Finally, all the
systems required trained and experienced observers to identify and image the CTCs.

Table 3. Characteristics of different CTC isolation methods.

Method CellCollector EpCAM CellCollector PCa ScreenCell Ficoll *

CTC isolation basis EpCAM PSMA, PSA, PSCA, EpCAM Size: <8 µm cells Density of Cell + CD45
Used marker

CK 8, 18,19, CD45 CK 8, 18, 19, CD45 CK8, 18, 19, CD45 CK 8, 18, 19, CD45
or MGG or MGG

Test volume
(EDTA blood) 7.5 mL 7.5 mL 3 mL 3 mL

Leukocyte
contamination <10 <10 ≥2000 ≥500

CTC cultivation
effort n.p. n.p. no yes

Hands-on time for
the CTC result per

test
≥3 h ≥3 h ≥2 h ≥3 h

Cost per test ±300 € ±350 € ±250 € ±200 €

Abbreviations: EpCAM = epithelial cell adhesion molecule, PSMA = prostate-specific membrane antigen,
PSA = prostate-specific antigen, PSCA = prostate-specific stem cell antigen, CTC = circulating tumor cell,
CD45 = cluster of differentiation 45, MGG = May-Grunwald Giemsa, n.p.
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3.4. CTC Cultivation

Blood samples of three mPCa patients in cohort 2 were processed parallel with
Ficoll * (3 mL of blood) and CS circular filter CTC cultivation (6 mL of blood). The origi-
nating CTCs were directly cultivated in a 24-well cell culture and seeded in CELLview
slides. However, the cultivation of CTCs was possible only for one patient, for whom
isolation with the Ficoll * system was performed. The patient had bone and lymph
node metastasis of the PCa and was treated at the time of blood sampling with ADT.
The serum PSA level was 10.7 ng/mL. In addition, he had not received any chemother-
apy. After 7 days of culture, we changed a third of the medium, and on the 10th, 13th
and 22nd days of cultivation, we determined the PSA level in the collected medium.
Furthermore, CTCs were characterized for CK expression (Figure 6a). The cultivated
CTCs showed positivity for classical epidermal markers (CK 8, 9 and 10). Single CTCs
were also positive for PSA expression by immunostaining (data not shown). The CTCs
demonstrated by brightfield imaging mainly adhered to growing cells, and clustering of
the cells was observed. The morphologies of the growing CTCs became paler and more
elongated in the culture (Figure 6e,f).
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Figure 6. Representative images of cultivated CTCs. The CTCs display positive staining for (a) CK 8,
9 and 18, (b) Hoechst 33258 staining, (c) CD45 negativity and (d) overlay of images (a–c). Scale bar
presents 20 µm. Brightfield images of growing CTCs (e,f).

Furthermore, we analyzed the PSA level in the cell culture wells of the cultivated
CTCs. After ten days of cultivation, we determined a mean PSA level of 0.47 ng/mL in
the tested wells. Unfortunately, a mean PSA level of only 0.02 ng/mL was detected in the
wells over 3 weeks (Figure 7).
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Figure 7. Concentration of PSA in ng/mL of cultivated CTCs in the supernatant displayed as median
with range. CTCs were successfully cultivated in different single-cell culture wells of a 24-well plate.
CTCs originated from a single patient.

3.5. Prognostic Performance of the CTC Status

Patients of our cohorts were positive for PCa metastasis, which resulted in a slight
decrease in general conditions. In study cohort 1, the patients reached a follow-up time
of 5 years. We used the established CTC cutoff values of <5 or ≥5 CTCs for the OS
analyses [13]. The OS estimated in different groups was compared using the log-rank
(Mantel–Cox) test. Patients (73.3%) evaluated with CC-EpCAM and with <5 CTCs survived
a median of 2.1 years, and patients (26.7%) with ≥5 CTCs survived a median of 0.93 years.
The hazard ratio (HR), referring to <5 CTCs or ≥5 CTCs, was 0.53 (95% confidence interval
(CI): 0.13–2.1, Figure 8a).

Diagnostics 2022, 12, x FOR PEER REVIEW 12 of 17 
 

 

3.5. Prognostic Performance of the CTC Status 
Patients of our cohorts were positive for PCa metastasis, which resulted in a slight 

decrease in general conditions. In study cohort 1, the patients reached a follow-up time of 
5 years. We used the established CTC cutoff values of <5 or ≥5 CTCs for the OS analyses 
[13]. The OS estimated in different groups was compared using the log-rank (Mantel–Cox) 
test. Patients (73.3%) evaluated with CC-EpCAM and with <5 CTCs survived a median of 
2.1 years, and patients (26.7%) with ≥5 CTCs survived a median of 0.93 years. The hazard 
ratio (HR), referring to <5 CTCs or ≥5 CTCs, was 0.53 (95% confidence interval (CI): 0.13–
2.1, Figure 8a). 

 

0 1 2 3 4 5 6
0

50

100

years

Pr
ob

ab
ili

ty
 o

f S
ur

vi
va

l <5 CTC CC-EpCAM

≥5 CTC CC-EpCAM

0 1 2 3 4 5 6
0

50

100

years

Pr
ob

ab
ili

ty
 o

f S
ur

vi
va

l <5 CTC CC-PCa

 ≥5 CTC CC-PCa

 
Figure 8. Kaplan–Meier curves of OS according to CTC count determined with (a) CC-EpCAM and 
with (b) CC-PCa: (a) The patients with <5 CTCs and ≥5 CTCs showed a difference in OS (2.1 years 
versus 0.93 years (HR 0.53, 95% CI: 0.13–2.1)). (b) The patients with <5 CTCs and ≥5 CTCs showed 
a difference in OS (4.0 years versus 1.5 years (HR 0.33, 95% CI: 0.11–0.97)). 

Patients (20%) evaluated with CC-PCa and with <5 CTCs survived a median of 4.0 
years, and patients (80%) with ≥5 CTCs survived a median of 1.5 years. The HR, referring 
to <5 CTCs or ≥5 CTCs, was 0.33 (95% CI: 0.11–0.97, Figure 8b). In cohort 2, we reached a 
follow-up time of 2 years. Unfortunately, three patients were lost to follow-up. Due to the 
small study population, we could not perform survival analyses. 

4. Discussion 
Selecting a well-suited method for isolating/characterizing CTCs remains a chal-

lenge. Isolation platforms should be used to detect most heterogeneous CTC phenotypes 
that survive after drug therapy to identify treatment targets for clinical testing or drug 
development [4,36,37]. In our study, we evaluated the CTC count with isolation platforms 
relying on different cell characteristics and laboratory handling. We assessed two cohorts 
of mPCa patients. The demographical characteristics were not significantly different in 
our study population. In addition, we used in our cohorts at least one CTC capturing 
method, based on the EpCAM signal currently recognized at the only FDA-approved sur-
face marker for CTC detection. We performed immunofluorescence staining of the cytol-
ogy-based FDA CTC criteria. These facts allowed for a more rigorous discussion of the 
results. 

The first step was to develop and evaluate the PCa functionalized CellCollector sys-
tem as a proof of concept. Our immunofluorescence displayed the classical signals in the 
analyzed LNCaP cells. The only polyclonal antibody, PSCA, was created against the 
whole amino acid sequence of the protein. For that reason, this antibody can bind in any 

(a) (b) 

Figure 8. Kaplan–Meier curves of OS according to CTC count determined with (a) CC-EpCAM and
with (b) CC-PCa: (a) The patients with <5 CTCs and ≥5 CTCs showed a difference in OS (2.1 years
versus 0.93 years (HR 0.53, 95% CI: 0.13–2.1)). (b) The patients with <5 CTCs and ≥5 CTCs showed a
difference in OS (4.0 years versus 1.5 years (HR 0.33, 95% CI: 0.11–0.97)).

Patients (20%) evaluated with CC-PCa and with <5 CTCs survived a median of
4.0 years, and patients (80%) with ≥5 CTCs survived a median of 1.5 years. The HR,
referring to <5 CTCs or ≥5 CTCs, was 0.33 (95% CI: 0.11–0.97, Figure 8b). In cohort 2, we
reached a follow-up time of 2 years. Unfortunately, three patients were lost to follow-up.
Due to the small study population, we could not perform survival analyses.
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4. Discussion

Selecting a well-suited method for isolating/characterizing CTCs remains a challenge.
Isolation platforms should be used to detect most heterogeneous CTC phenotypes that
survive after drug therapy to identify treatment targets for clinical testing or drug develop-
ment [4,36,37]. In our study, we evaluated the CTC count with isolation platforms relying
on different cell characteristics and laboratory handling. We assessed two cohorts of mPCa
patients. The demographical characteristics were not significantly different in our study
population. In addition, we used in our cohorts at least one CTC capturing method, based
on the EpCAM signal currently recognized at the only FDA-approved surface marker for
CTC detection. We performed immunofluorescence staining of the cytology-based FDA
CTC criteria. These facts allowed for a more rigorous discussion of the results.

The first step was to develop and evaluate the PCa functionalized CellCollector system
as a proof of concept. Our immunofluorescence displayed the classical signals in the
analyzed LNCaP cells. The only polyclonal antibody, PSCA, was created against the whole
amino acid sequence of the protein. For that reason, this antibody can bind in any position
of the protein. This reflects the signals in our analyzed cells. Wang et al. demonstrated in
Western blot analyses the expression of PSCA in LNCaP cells [38]. Unspecific capturing of
cells in our trial was excluded by the use of the cytology-based FDA definition of CTCs.
We revealed in the spiking experiment a moderate recovery rate (30–48%) of the cells
with two different CellCollector systems. One reason for this could be the expression of
various adhesion molecules of cell line cells that leads to different cell–cell contacts that
can potentially influence the recovery rate [39]. Furthermore, in our previous trial, we
received with the EpCAM functionalized CellCollector a high recovery rate (35%) of LNCaP
(200 cells) and low recovery rate of 10% (50 cells) [32]. This suggested a higher sensitivity
for capturing PCa cells with the CC-PCa.

Our data for cohort 1 highlighted the disparities in the detection rate and CTC count
in matched blood samples between the different CellCollector systems. These results
show detection rates of 86.7% for CC-PCa vs. 73.3% for CC-EpCAM and a significantly
higher CTC count for CC-PCa that reflects the spiking experiments. Furthermore, the weak
correlation of the CTC counts between the different functionalized CellCollector systems
demonstrated the independence of the CTC counts. The only difference between the
CellCollector systems was the surface antibody functionalization for capturing CTCs. The
immunocytochemistry characterization of the CTCs was identical and performed by the
same operator. These results demonstrate the heterogeneity in the CTC population based
on different cell-surface antigens. CC-PCa allowed identification of a hybrid population of
CTCs, which may reflect epithelial/mesenchymal phenotypes. EMT is a crucial process
of tumor progression [40]. In the case of our analysis, in addition to the EpCAM signal,
the isolated CTCs expressed PSMA, PSA and/or PSCA. In other studies, the detection rate
of PSMA-positive CTCs ranged between 67% [41] and 59% [42] in advanced PCa patients.
In our previous clinical trial, we detected a PSMA signal at the mRNA level in CTCs
isolated with CC-EpCAM in only 14.3% of mPCa patients [32]. Nagaya et al. [42] observed
that increased PSMA expression in CTCs was associated with a poor treatment response
and shorter OS and PSA progression-free survival in castration-resistant PCa patients. In
contrast, we observed in cohort 1 no significant differences in OS between the different
functionalized CellCollector systems. Nevertheless, interestingly, patients with ≥5 CTCs
isolated with CC-EpCAM had an OS of 0.93 years, and patients with ≥5 CTCs isolated
with CC-PCa had an OS of 1.5 years in this cohort. Even if advanced PCa patients have
more CTCs, these cells can lose the features of epithelial cells and undergo EMT, thereby
promoting disease progression [9,43]. However, Keller et al. [44], in 2019, reviewed the
biological functions of EpCAM, including the regulation of cell proliferation and cancer
stemness, and emphasized the active role of EpCAM in cancer metastasis. Therefore, it is
essential for CTC isolation platforms based on biological characteristics to not completely
eliminate EpCAM molecules from capturing strategies. This allows the capture of CTCs
with mesenchymal and epithelial phenotypes and of various intermediate stages [10].
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Markou et al. [31] demonstrated, in a multiplex gene expression profiling of EpCAM-
positive CTCs, the detection of stem cell markers (CD133, ALDH1A1 and PSCA) only
before surgery or radiotherapy. However, the EMT markers TWIST1, VIM, CDH2 and
B2M in isolated CTCs after surgery/radiotherapy in high-risk PCa patients were increased.
They concluded that CTCs with an EMT phenotype remain undetected by EpCAM-based
isolation methods [31]. CC-PCa, which was developed in our investigation, allowed the
capture of such CTCs without a complete exclusion of EpCAM capture.

The Epic Science platform carries out CTC isolation without specific selection, only
with red blood cell lysis and deposition of all nucleated cells on 12 glass slides [45]. Scher H.
and colleagues quantified 9225 individual CTCs of 179 metastatic CRPC patients isolated
with this platform and defined phenotypically distinct cell types [46]. They showed that
phenotypic heterogeneity was associated with OS and treatment response. They demon-
strated that patients with low heterogeneity in CTC population benefit from treatment with
androgen receptor signaling inhibitors, whereas patients with high heterogeneity in CTCs
benefit from taxane chemotherapy [46]. These results also confirm the significance and
relevance of the CTC heterogeneity evaluation.

In cohort 2, we evaluated different CTC isolation platforms based on physical CTC
properties and biological properties based on EpCAM expression. The greatest advantage
of antibody-independent platforms is unattached cells. Antibodies or biomolecules for
CTC capture may influence downstream analysis [47]. We observed that the CTC detection
rates have a broad range independent of the physical or biological CTC properties. The
filter system (SC) allowed CTC selection by size and had the highest detection rate in
our investigation. Similar results were presented in blood samples of metastatic breast
cancer [48] and in lung cancer patients [49] with this filter system. Interestingly, CC-EpCAM
reached second place in detection rate and CTC count, which confirms the discussion above
of the role of EpCAM-based CTC isolation in advanced PCa patients. The highest CTC
count was determined with the SC filter system and MGG staining. The advantage of
this system is that CTC selection is based only on the size of the CTCs. Red blood cells
(8 µm) pass through the filter. White blood cells (7–12 µm) sometimes fall between pores,
but they can be identified on the basis of nuclear morphology and size. The disadvantage
of this system is blood clots on the filters, which result in loss of blood samples without
any results. A reason for clotting may be a high concentration of CTC clusters (>8 µm),
which have a higher metastatic potential through increased cell survival and reduced
apoptosis [50]. Furthermore, smaller CTCs (4–8 µm) can run through the filter, which
reduces the possibility to analyze the morphological and phenotypical [51] heterogeneity
of CTC population.

The lower CTC counts of the Ficoll * systems and the CC-EpCAM system may be
the result of the multiple washing and sample transfer steps. The Ficoll * system had
the most procedural steps with possible loss of CTCs. However, our research shows the
Ficoll * systems had the highest sensitivity and specificity for 24-month survival. On the
contrary, the CC-PCa and CC-EpCAM have lower specificity but higher sensitivity of CTC
capturing compared to the Ficoll * system. Furthermore, in our previous trial, the EpCAM
wire demonstrated in vivo a similar diagnostic accuracy to the FDA-approved CellSearch
System [28] which confirmed in vivo application of the CellCollector. Unexpectedly, CTC
cultivation was successful only with the Ficoll * system. This isolation method offered
nearly untouched CTCs and minimized the shear stress of cells. CTCs were captured
from patients who were treated with ADT and had progression of the cancer stage (more
than five metastases in bone lymph). The CTC cell line cultivation period was possible
for over 3 weeks. The cells secreted PSA at the highest concentration on the 10th day of
cultivation. It is possible that the cells changed their PSA expressions under cell culture
conditions, and only single cells were positive for PSA signals in immunohistochemistry.
CTCs were positive for CK 8, 18 and 19, which confirmed their epithelial state. The PSA
level of the patient after 2 months was slightly reduced under ADT, which could be caused
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by initiation of the intrinsic apoptotic pathway in CTCs. However, we have not analyzed
apoptotic markers.

Koch et al. [52] described, in their investigation of a CTC-derived breast cancer cell
line, that a high number of CTCs is necessary for the establishment of cell line analysis. We
had experiences that a smaller number of CTCs isolated with Ficoll ** was sufficient for
culture, although only for a limited time. This suggests the differences in phenotype and
high cell plasticity of both cell lines, which may also represent heterogenic stimuli [53].

The detection of CTC in our patient could indicate the dynamic of tumor growth;
however, it reflects only the circumstances of one time point. To describe the correlations
between the CTC count and clinical behavior of PCa patients, the monitoring must be
continued for a longer time. After we compare the CTC isolation methods, we can plan
such studies.

Our study has limitations, including the small sample size. The platform results
were obtained by manual enumeration of cells by immunocytochemistry or MGG. Visual
identification of CTCs was performed with a higher-level trained operator but can still
be subjective.

In summary, the best detection rates and highest CTC counts in our investigation
were reached with the CC-PCa and SC systems. Nevertheless, we observed the highest
sensitivity and specificity for 24-month survival with the Ficoll * and SC platforms with
MGG staining. The EpCAM molecule is an essential factor related to OS for CTC isolation
based on biological properties in mPCa patients. We observed the highest purity by the
ex vivo use of the CellCollector system. Cultivation of CTCs was only possible with
Ficoll *. The cost of the platforms and the required skills of the operator are similar. We
used standardized conditions for the isolation and characterization of CTCs and short
sample transfer. We conclude that the best-suited CTC capture technique is not limited to
one characteristic of the cells and must be adapted to the downstream analysis. Our results
imply that the clinical importance of the different CTC phenotypes must be elucidated.
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